
Keyword tags with RAKE

To generate candidate 𝑇𝑘𝑒𝑦 tags, we use Rose et. al’s RAKE[1] algorithm.

We used RAKE as it has been evaluated to be able to extract highly

specific terminology. RAKE first segments the sentence into a list of

candidate keywords, where each segment would be delimited by either a

stopword, a phrase delimiter (most punctuation marks), or the sentence

start or endpoint.

It then recovers potential keywords containing stopwords by looking for

keywords that adjoin one another at least twice in the document, in the

same order, but these are relatively rare. This has the advantage of being

able to identify long keywords which might be missed by n-gram-based

extraction.

The RAKE paper evaluates several metrics to identify which keywords are

most important. Here, for simplicity, we rank them by term frequency as

that does not involve constructing a word co-occurance matrix.

Domain tags with WordNet

For the domain tags, we make use of the WordNet and WordNet Domains

ontologies.

To identify the likeliest word sense for each word in our list of keywords, we

use the simplified Lesk Algorithm.[2] The algorithm takes adjacent words,

and for each of their possible word senses, it calculates the amount of

overlap between the word glosses, given a dictionary.

Once we have labeled each keyword with the likeliest word sense, we map

it to its domain tag(s) in the WordNet Domains ontology, as well as all its

ancestor nodes in the hierarchy.

Based on these mappings, we get a list of triples of the form {domain,

count, depth}, and we can rank the most relevant domain labels based on a

function of this triple, and selectively return or display the first 𝑛.

Finally, once we have identified all three kinds of tags, it becomes a simple

matter of either labeling the documents with them, or reverse-indexing the

documents with the tags, depending on what one wants to do.

Further work

It is outside the scope of this project, but we could attempt to map the

identified keywords to their appropriate entities using an entity knowledge

base such as YAGO or Wikidata, so we tag documents with the identified

entity rather than just the string.

Bibliography

1. Rose et. al. (2010). Automatic keyword extraction from individual

documents. Text Mining: Applications and Theory.

2. Lesk, M. (1986). Automatic sense disambiguation using machine

readable dictionaries. ACM.

3. R. Navigli (2009). Word Sense Disambiguation: A Survey. ACM.

Introduction

Picture yourself browsing your favourite website with a fair bit of text. This

can be news, blog posts, discussion threads, anything like that. These

kinds of documents usually have a title, and sometimes the author or the

site curator would manually tag it with additional topics contained within.

Our goal is to semi or fully automate topics or keyword identification in such

documents. This is of particular relevance in discussion threads where the

topic might drift away from the original title, or articles that change over

time, such as a wiki article or any sort of collaborative writing. Using our

method, one would simply re-index the documents to include the new

topics or keywords to better represent them in search.

Abstract

We present a method that identifies the ‘tags’ in a document. There are

three ‘families’ of tags.

1. Entity tags are names and proper nouns most often brought up in the

article.

2. Keyword tags identify the most relevant topics in the document.

3. Lastly, domain tags tell the user what area (e.g. political, economic,

scientific, etc.) the document belongs to.

The keyword tags are language-agnostic, but the other tags generated by

named entity recognition (NER) and from WordNet and domain information.

NER performance and application depends on the language and training

corpus, and WordNet dictionaries are in one language. Hence 𝑇𝑘𝑒𝑦 and

𝑇𝑑𝑜𝑚 are inevitably language-specific.

For testing and evaluation, we used the Wiki10+ and the Reuters-21578

corpuses. Both are in English and are relatively clean, with very few noisy

or misspelled text. We make use of WordNet and WordNet Domains

ontologies, and the main NLP toolkit we used is NLTK.

Methodology

Assumptions

1. Our method assumes that misspelled words are few enough to be

considered as background noise.

2. We assume that the classifiers used to perform the various NLP tasks

such as NER and SBD are trained on a corpus with a similar

language model to our corpus. Because this project is very short

term, training them ourselves is outside its scope.

For a given document 𝐷, we want to label it with three sets of tags; named

entity tags 𝑇𝑛𝑒, keyword tags 𝑇𝑘𝑒𝑦, and domain tags 𝑇𝑑𝑜𝑚.

To do this, we make use of two ontologies, WordNet and WordNet

Domains. WordNet maps a string (which is not necessarily a monogram)

into a list of WordNet senses, ranked by how often that particular sense is

used.

For each WordNet sense, WordNet Domains gives at least one mapping to

a domain label. WordNet domains are arranged in the form of a hierarchical

tree graph of depth 4.

Entity tags with NER

Generating the set 𝑇𝑛𝑒 is simple. First, we perform sentence boundary

disambiguation (SBD) on the corpus to get a list of sentences. We then

identify the named entities (NE’s) in each sentence by using NLTK’s pre-

trained NER classifier and rank them by their term frequency.

Document Tag Clouds
Li Quan Khoo, Giulia Deiana

Intended audience:

BS/MEng/MSc CompSci

Criteria of compatibility of a system of linear Diophantine 

equations, strict inequations, and nonstrict inequations are

considered.

Figure 2. Bolded words are candidate keywords. Example from RAKE paper.

{United States, Barack Obama, …}

{Election, candidate, poll, …}

{Politics, …}

Figure 1. Our desired mappings

{“laser”, 1}
string sense

{Optics, …}

Domains
(from WordNet domains)

Ancestor domains

{Physics, Pure science}

{…, …}

Figure 3. Word sense to domain mappings


