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Abstract

In the context of image processing, the most salient parts
of the image tend to trigger the largest activations in con-
vnets. This also means that, whatever the task of the con-
vnet is, it is also implicitly doing some form of localization
as part of the loss-minimization process. We want to find a
way to harness the this information to annotate bounding
boxes around out-of-sample objects. We say that an ob-
Jject is out-of-sample if the bounding box network has never
been trained on that object class before. This is useful when
we have libraries of object categories with no associated
bounding box annotation to perform supervised learning
with. Our method operates as a separate, portable ”aux-
illary network”, which could be attached to a host network
that simply performs image classification.

1. Introduction

ConvNets have been an integral part of image process-
ing ever since AlexNet [6] was entered into ILSVRC-2010.
Although the idea is not new, advances in our understand-
ing, as well as continued improvements in harnessing GPU
computation and memory meant that convolutional archi-
tectures have stayed at the forefront of image (and video)
processing, as they are a natural fit to the nature of the data.

Because convnets’ output features or activation volumes
have the notion of spatial extent, they are not just detecting
salient features from their input - they are also implicitly lo-
calizing the activation at some area within their activation
volume. The focus of our project is about using this local-
ization information to put bounding boxes around objects.
We investigate whether we could train a model that under-
stands objects in images at a general-enough level so that it
could put bounding boxes around instances of entire classes
of objects which it has never seen before. This idea of gen-
eralization is just as important as raw performance in the
pursuit of general artificial intelligence and understanding.
For example, a toddler could easily handle an object, even
if it’s the first time he or she has seen it, by making assump-

tions about its properties from their prior experience with
other objects perceived to be visually similar.

In order to train such a general model, we must abstract
away from raw pixel values, and instead operate on some
higher-level summarization or understanding of the image,
e.g. feature activations of a convnet trained to perform im-
age classification. Our method then, is to train a model
to make use of intermediate convnet activations to make
our best guess at bounding whatever the convnet believes
is most relevant with respect to its task. The nature of those
bounds would depend on objects in the training set, which
in turn, are drawn from the universe of all objects. One in-
spiration behind the idea is the prior work on algorithms for
generating region proposals such as Selective Search [13]
and EdgeBoxes [16]], which demonstrates that even low-
level (and therefore cheap) image features could suggest
the presence of some object with high probability. This is
humorously described in the CS231n lecture as detecting
“blobby” regions. If many objects tend to be “blobby”, then
perhaps the model would learn to recognize that fact and
generalize sufficiently well.

2. Related work

There is a large body of prior work on labelling objects’
locations in images, and the granularity of the annotation
itself ranges from simply the absence or presence of an ob-
ject, to one or multiple bounding boxes, all the way to pixel-
level segmentation. Fully-supervised convolutional models
that annotate bounding boxes already perform quite well;
He et. al.’s winning entry [4] for ILSVRC-2015 achieved a
localization error of 0.09. Here, localization error is defined
as the percentage of images which achieves an intersection-
over-union (IoU) of greater than or equal to 0.5 between the
ground-truth and predicted bounding box areas.

On the other hand, weakly supervised learning is a term
that loosely describes methods that train the model on lim-
ited information or only with partial annotation, the exact
nature of which depends on context. For example, train-
ing a bounding box annotator based only on whether an ob-
ject is present or not, may be considered a form of weakly-



supervised learning. The advantage of weakly-supervised
approaches is that they can produce the full annotation
while working with partially-annotated datasets, e.g. im-
ages with no bounding boxes, which are all-too-common in
ImageNet. The drawback is that they do not perform as well
as fully-supervised approaches.

As an example, Ocquab, Bottou et. al.’s model [7] learns
to approximate the center of an object in an image (but
not its bounds) on images in VOC 07 and COCO, when
trained only on labels that describe whether the object class
is present or not. However, the work which is closest in
spirit to ours is [10], where the authors train a model to
rank a series of region proposals according to the degree
of overlap with the ground truth bounding box, and then
make use of the model to rank region proposals for im-
age classes that do not have ground truth, and their model
achieves 0.3213 CorLoc on the AllView dataset. CorLoc
stands for correctly-localized, and it is defined as 1 - local-
ization error. Teh et. al’s work [[12] is highly similar, but
their model is trained in a fully-supervised setting, and they
achieved 0.6459 CorLoc on Pascal VOC.

Our method takes a different approach, by not working
with region proposals at all. Our original inspiration actu-
ally comes from attention mechanisms in RNNs, in particu-
lar, from Xu et. al.’s Show and Tell [14]. In Xu’s work, the
RNN is being used for image captioning, therefore it makes
sense to make use of an attention layer that allows the RNN
to select which parts of the ConvNet’s feature map to focus
on, when generating each individual word. In our case, be-
cause we are working with only one bounding box per im-
age, we can work directly with the convnet’s feature map.
The map itself is the attention layer, so to speak, because
one would expect the parts that correspond to the salient re-
gions would be maximally-activated, assuming the convnet
classified the image correctly. Visualizations in the ZFNet
paper [15] provide good intuition to the idea.

Therefore, instead of learning a way to rank region pro-
posals as in [10], we directly learn the mapping from a set
of feature maps to a single set of bounding box coordi-
nates, and we rely solely on a convnet’s ability to assign
the differences in each image sample as either intra or inter-
class variation, in order to perform the generalization that
we need.

3. Data and preprocessing

Our candidate images were drawn from ImageNet [9]
synsets which contain at least 600 images, where each must
also have an annotated ground-truth bounding box. At time
of download, there were 265 synsets that meet this initial
criteria. Of these, 38 synsets exist as WordNet synset IDs
and do not have an English label, so they were discarded.
This leaves us with 227 candidate synsets. All of these im-
ages were then verified to have one and only one bounding

box, therefore we could safely operate on the single bound-
ing box assumption.

Upon further inspection, a subset of images have out-of-
bounds bounding boxes, so we clipped these boxes to the
maximum bounds of their respective image. Furthermore,
when attempting to load the images as tensors, we found
that the dimensions of some small (but significant) num-
ber of images deviate from the expected shape of (h,w,3),
which corresponds to a 3-channel RGB JPEG file. These
are mainly black and white images with a single channel, or
4-channel CMYK JPEG files. We simply discard any im-
age which is not formatted as 3-channel RGB. In addition,
we discard any image whose height or width is smaller than
224 pixels. After this filtering, the remaining 198 synsets
which still contain at least 400 images are used for the rest
of our method. In total, we have N=115,064 images.

Because we want to evaluate our method’s performance
on out-of-sample images, we split the 198 synsets into two
datasets: The training dataset contains the top 160 synsets
ranked by the number of images contained, and the remain-
ing 38 makes up the so-called holdout dataset. Each of the
two datasets contains their own training and validation im-
ages. For each synset, we set aside 50 images to perform
validation with.

4. Method

Figure [I] illustrates our general setup. First, we use
the training dataset to train a convnet, called the training
host, which simply performs single-label image classifica-
tion. Once trained, we freeze the host’s weights, and then
we attach and train a separate network, called the auxillary
network, which is responsible for outputting bounding box
coordinates. The auxillary network’s input consists of fea-
ture maps from specific layers of the host network; it never
knows what the actual image or class label is. When we
want to evaluate the model’s performance on out-of-sample
images, we train another host convnet called the test host on
the holdout dataset, and then attach the trained auxillary net-
work to it, and finally we evaluate the quality of the bound-
ing boxes we get. As baselines, we evaluate the model’s
performance without transfer learning, i.e. the quality of
the bounding boxes on the same dataset the aux network is
trained on.

Instead of training both the host and the auxillary net-
work end-to-end, we freeze the host’s weights before train-
ing the auxillary network in order to prevent information
about bounding box labels from leaking back to the host and
thus alter the host’s feature maps in the process. Because
this leakage never happens during evaluation, the auxillary
network is necessarily operating on a set of feature maps
optimized without bounding box information, so we might
expect a model trained in this manner to perform less well.

A second consideration is actually the question of which
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Figure 1. General architecture. A dotted outline means that layer was retrained or modified.

feature maps we should use. While lower layers in the
ResNet architecture have more spatial resolution, higher
level layers contain more information about the actual ob-
ject class, rather than components or parts that make up the
object. In order to take advantage of both, our input con-
sists of weights from both layers at the top and lower down.
Each activation volume also contains many channels. The
simplest option would be to simply concatenate all the chan-
nels from all the layers we want, but that creates a very large
input tensor to the auxillary network. Another idea would
be to flatten individual feature volumes via a max or mean
operation over the channel dimension, because what we’re
really interested in is the spatial information, and activations
in all relevant filters, which should tell us something about
the object - this could be seen in Figure 2 of He et. al’s
Spatial Pyramid Pooling paper [3]]. Using the mean may re-
sult in a weaker signal due to cancellations between positive
and negative values, but it would contain more information
about the image (and therefore be more robust) than using
only the maximally-activated channel. Here, a maximally-
activated channel means the channel with the greatest sum
of all activations. Despite this tradeoff, we found that the
model performs better using channel-wise mean. We sus-
pect that the optimal operation might be to perform a k-
channel mean instead, to filter out noisy activations, but we
did not have time to perform hyperparameter search over
this variable, and its value may very well be depend on in-
dividual datasets.

4.1. Details

The hosts we used are pre-trained ResNet-18s from Py-
Torch’s model zoo [1]]. There are many variants of ResNets,
but they all share the same general architecture. The first
layers read in a 224x224 image with a 7x7 conv filter size.
Immediately higher up are four “blocks” of layers called
conv2_x to conv5_x, each with the residual connections
within. The spatial size of the feature maps of these blocks
also shrink by a half from one block to the next, from 112
all the way to just 7 after conv5_x. Higher up, we have the
average pooling layer which connects directly to the FC,
which outputs class scores. Residual nets were selected pri-
marily for several reasons. Firstly, they are easy to train,
because they converge quickly for a wide range of learning
rates, thanks to the use of batch normalization and residual
connections. Secondly, ResNets are relatively lightweight
in terms of memory, by doing away with FC layers at the
top, and they have been demonstrated to have state-of-the-
art classification performance. Lastly, their feature maps
have the same spatial size as VGGNet’s [11]], allowing us
to compare the performance of the auxillary network across
different hosts. However, we did not have the opportunity to
run this particular experiment, because we did not manage
to train the training and test hosts using a modified VGG-16
to convergence in time.

The auxillary network is a simple sequential convnet.
Convolutional layers were used because the network’s input
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Figure 2. Model visualization. Left group is Baseline 1, right group is Baseline 2. Green box is ground truth. Red box is prediction. The
color grid is the visualization of the auxillary network’s input. Green, red, and blue are channel-wise averages of outputs from Conv5 x,
Conv4_x, and Conv3_x respectively for the corresponding image, upscaled to a spatial size of 28 x 28, multiplied by 10 and then clamped

to a max of 255.

could be interpreted as a 3-channel image, especially since
the host ResNet’s feature maps have been batch-normalized.
Both conv layers are spatially-preserving with kernel size 3,
stride 1, padding 1, with 32 filters each.

The method by which we transform the ResNet’s inter-
mediate outputs into the 3-channel input tensor of the aux-
illary network is thus: Starting from the output of Conv3_x,
the tensor sizes are [128 x 28 x 28], [256 x 14 x 14], and
[512 x 7 x 7]. We first flatten the channel dimension by tak-
ing the mean, and then we upscale all three tensors to [1 x
28 x 28] via a transpose convolution operation. For exam-
ple, to upscale by k times, we would feed the tensor into
a transpose convolutional layer with kernel size and stride
of k, with weights locked to 1 and biases to 0. Finally, we
simply concatenate all three tensors together in the chan-
nel dimension, meaning that it could be interpreted as as a
false-color image.

We trained all our models with PyTorch’s implementa-
tion of the Adam optimizer [3] with a minibatch size of 64,
and we decayed the learning rate from 102 to 10~* when-
ever validation error plateaus. Convergence was attained
within fewer than 10 epochs. We used the cross-entropy
(CE) loss function when training the hosts, and simple mean
squared error (MSE) loss when training the auxillary net-
work. Cross-entropy loss is defined as:
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where

n is the minibatch size

e X is the set of inputs in the minibatch

vy is the image class label

9 is the predicted image class label

Mean squared error loss is defined as:
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where y; and y:; are 4-dimensional vectors representing
bounding box ground truth and predictions respectively.

5. Results and discussion

Quantitatively, we use the Intersection over Union (IoU)
and CorLoc criteria for evaluating the quality of the bound-
ing box with respect to the ground truth. IoU is defined as
the fraction of the area of intersection between ground truth
and predicted bounding boxes over their union, in terms of
number of pixels. CorLoc is defined as the proportion of
images having an IoU of greater than 0.5.

The performance of the auxillary network depends heav-
ily on the host being able to correctly classify the salient
object as the right class. However, due to the way we split
the datasets into 160 and 38 object categories, the perfor-
mance of our retrained ResNet hosts are not directly com-
parable to many standard results, for example, performance
in the 1000-class ImageNet challenge. Instead, we created
two baseline models to evaluate the quality of the transfer



Top-1 acc | Mean IoU | CorLoc
Baseline 1 | 0.800 0.555 0.463
Baseline 2 | 0.836 0.512 0.403
Model 0.836 0.511 0.399

Table 1. Quantitative performance evaluation. Top-1 accuracy is
not directly comparable as Baseline 1 is across 160 object cate-
gories, while Baseline 2 is across 38.

learning. In Table [T} Baseline 1 measures the in-sample
bounding performance on the training dataset. Baseline 2
measures the same but on the test dataset. What’s most sur-
prising is that the model performs neck-to-neck with Base-
line 2. This suggests that the out-of-sample bounding per-
formance is competitive with a model trained end-to-end,
at least for the test dataset, which admittedly only has 38
different object categories.

Because the performance of the auxillary net depends en-
tirely on the quality of the feature maps of the host ResNet,
we evaluate the model qualitatively by visualizing those fea-
ture maps as an RGB image, alongside the bounding box
output. We shall refer to this visualization as the color grid.
To make the grid clearer, we multiplied the individual val-
ues in the input tensor by a factor of 10, while clamping it to
a maximum value of 255. Green, red and blue represent the
outputs from Conv5_x, Conv4_x, and Conv3_x respectively.
This produces Figure 2] We can see that the green chan-
nel from Baseline 1 quite clearly follows the outline of the
salient object. For images where the host produces this kind
of feature map, the auxillary network performs quite well.
In the same figure, we can see that the test host in Baseline
2 doesn’t produce this kind of nice feature map, and we can
try to hazard a guess as to why:

Looking at Figure [2] and the first two images in Figure
[Bl we can see that red regions in the color grid tend to
surround the green region, rather than overlapping with it,
which would cause it to show up as yellow instead. The
blue channel tends to be quite diffuse and tends to cover
the entire image, but we believe it is important for detecting
textures, or generally uniform areas, as seen in the image of
the pizza and the dishrag. The green region by itself tends to
correlate with only the pixels that identify the image as the
correct object class, for example, it only clusters around the
collar of the sweater in Figure [3] What this suggests is that
the red and blue channels which correspond to lower-level
features are also important for determining the bounds of
the entire object. For certain object classes, we found that
the red region almost serves as the complement of the green
region, for example, in the image of the hook in Figure [3]
and many images from Baseline 1 in Figure We find this
to be a very interesting property, but there is no immediate
or obvious reason as to why the host network might behave
this way.

sweater (sweater)

hook (hook)

Figure 3. More example outputs from Baseline 1.

The remaining five images in Figure [3show some prob-
lematic cases for Baseline 1. We believe these are example
cases when the classifier or host network fails to generalize
properly for a certain object class. We can see that the green
region, which is what the network believes to be salient,
does not correspond to the subject, but rather some parts of
the background, similar to the example in Figure 9 of Xu et.
al.’s Show, Attend, and Tell [14]. As a side note, we found
that the auxillary network performs very poorly on the can-
dle and mirror object classes. The candle tends to be classi-
fied correctly, but it may be too thin to be localized properly,
as we shall explain when we look at pathological cases, but
mirror is highly problematic in every case, as whatever be-
ing reflected could be classified as an object class by itself,
which makes for very large intra-class variation as well as
overlap with other potential class labels.

Bearing these results in mind, if we look at Baseline 2’s
results in[2]again, we believe that 38 classes of objects is in-
sufficient for the network to learn the difference between in-
ter and intra-class variation sufficiently; the vast majority of
activation maps do not have any clear, visually-discernible
pattern that relates it to the bounding box. Despite this
visual difference, the transferred auxillary network in our
main setup seems to be able to make sense of the input and
give the results in Tablem However, we feel that our eval-
uation, especially the model’s quantitative performance, is
not truly representative of what this setup can do, but we did
not manage to acquire and preprocess more data in time for
this report.

The model performs poorly under certain circumstances,
some of which are quite obvious, as seen in Figure[d Being
a weakly-supervised method, these cases generally corre-
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Figure 4. Pathological cases. These are outputs from Baseline 1.

spond to situations when the host cannot produce feature
maps with sufficient spatial information for the auxillary
network to interpret, or if the correct class label is not neces-
sarily the subject of the image as suggested by the framing.

Because the input to the auxillary network has a spatial
size of just 28 x 28, when the subject is too small, usu-
ally there isn’t enough spatial information left in the feature
map to localize it correctly. In addition, some images have
multiple subjects, but we only have one bounding box an-
notation, so the auxillary network would try to bound all of
the salient regions in a single bounding box, for example
in the image of the ox in Figure ] There are also cases
where multiple object classes are present simultaneously in
the an image, but since the host network is set up to only
detect one object class, the auxillary network would only
ever output one corresponding bounding box. We observed
that when the auxillary network is not sure what to make of
its input, it tends to output a bounding box with corners sit-
uated approximately halfway between the edge and center
of the image to minimize the MSE loss, regardless of where
the ground truth box might be. This corresponds to pixel
coordinates (54, 54) and (168,168).

6. Further work

The model in its current form doesn’t have many practi-
cal applications since its CorLoc is only about 0.4. How-
ever, the first reasonable thing to try is to scale up both
the training and holdout datasets to, say, 500 object classes
each, to see how far the model can improve, if at all.

Solving most of the pathological cases which we’ve
identified is challenging. We can see no obvious solution for
out-of-sample occlusion because there would be few ways
to determine the true bounds of such an object. For the other
cases, suppose we have a method that takes in or generates
a set of region proposals as candidate bounding boxes and
a convnet that recognizes the object classes, what we have
is essentially Fast R-CNN [2]. What we really wanted to

investigate was whether there is a good way to avoid re-
gion proposal methods (that naively generate thousands of
proposals to provide high recall), and instead generate the
bounding box based on some higher-level understanding of
common features across different object classes. Region
proposal networks in Faster R-CNN [8] seem like a good
fit at first glance, but without ground-truth bounding boxes
to train it in the first place, it is not a viable solution in our
scenario. From what we can determine, in the case of one
object class and bounding box per image, our approach is
viable, but should that assumption break down, methods
like Fast R-CNN, along with the comparatively slow region-
proposal process [8]], seem like the only way to go.

Lastly, when we set out on this project, a bonus objec-
tive was to investigate whether the auxillary network could
be treated as a highly modular unit, which can be attached to
a test host of a different (but compatible) architecture, e.g.
a VGGNet. The use case would be that we have some clas-
sifier network already trained on a custom dataset with only
image class labels, and we are interested in bounding those
objects as well, but we do not have ground-truth boxes. It
would be very useful if we could not, or would not need to
retrain the existing host with a ResNet. A compatible archi-
tecture would need to have the following properties:

e We need to use as many feature maps as we do in the
original architecture. For example, we used the top 3
feature maps from ResNet, so if we were to consider
transferring the trained auxillary network to a VGGNet
host, we need to do the same to it.

e Feature maps need to be of the same spatial size as the
original architecture, after channel-wise average.

e Feature maps need to be outputs from batch normal-
ization layers, so that their values are (stochastically)
well-behaved, even across different architectures and
images.

We did not have sufficient time to train a VGGNet modi-
fied with batchnorm layers to convergence, so we leave this
as an interesting direction to pursue.

7. Conclusion

We have shown that, using our proposed setup, an auxil-
lary network trained to annotate bounding boxes has out-of-
sample performance that is competitive with its in-sample
performance. We discussed the shortcomings of our re-
search, in particular, when the dataset is too small for the
host network to generalize sufficiently well in order to eval-
uate the auxillary network’s performance fairly, and finally,
we suggested alternative approaches and further work in
light of our results.
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